Tentative technical presentation schedule as of 15 JUN 2016

Monday, 18 JUL 2016
9:30 am - Keynote Lecture
Structural UHPC: Welcome to the post-concrete era!
Professor Eugen Brühwiler, École Polytechnique Fédérale, Lausanne, Switzerland.

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Author 1 Full Name</th>
<th>Author 2 Full Name</th>
<th>Author 3 Full Name</th>
<th>Author 4 Full Name</th>
<th>Author 5 Full Name</th>
<th>Author 6 Full Name</th>
<th>Author 7 Full Name</th>
<th>Author 8 Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:50 am</td>
<td>8:30 am - Keynote Lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:50 am</td>
<td>8:30 am - Keynote Lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monday, 18 JUL 2016
10:00 am - 12:00 pm
note: concurrent interactive Panel 1 on Structural Design

Materials 1
Moderator:

1	1.65	Green Ultra-High Performance Glass Concrete	Alex Zang, Maxime Tardivier, David Li Arou Dhiab & Mojtaba Kazemi
2	1.66	Development of UHPC Using a Ternary Blend of Ultra-Fine Class F Fly Ash, Meta-kiesel and Portland Cement	Torello Tadeo, Taoxian Cao, Hongwei Fan, Elif Ucer, Macri Lluch
3	1.67	Analyzing Effects of Various Silica Fume Sources within Baseline UHPC	Jun Xia, Jun Xu, Shaoming Lian, Xiuchao Xu, Lu Hu
4	1.68	The applications of mine tailings to develop low cost UHPC	Andrew Zang, Maxime Tardivier, David Li Arou Dhiab & Mojtaba Kazemi

Material Behavior 1
Moderator:

1	1.69	Behavior of Ultra-High-Performance-Concrete at Early Age Experiments and Simulations	Keely L. Parry, Lamta El-Minghali, Stathis Tsarouchas
2	1.70	Influence of Cement Type and Type and Type of Aggregate on the Fresh and Hardened Properties of UHPC and HPC	Michael Brey, Sreelakshmi Ramesh, Hoang Kim
3	1.71	Fiber Reinforcement Influence on the Tensile Response of UHPPHC	Jun Xu, Shaoming Lian, Xiuchao Xu, Lu Hu
4	1.72	Experimental investigations on the cracking in the post cracking tensile behavior of UHPPHC	Jun Xu, Shaoming Lian, Xiuchao Xu, Lu Hu

Bridges 1
Moderator:

1	1.73	"An Innovative Technology for Accelerated Bridges - From Concept to Implementation - The Owner-Designer Dilemma"	Hartanto Wibowo, Vidya Sagar Ronanki, Zhengqi Li
2	1.74	Design and Construction of Illinois’ First Precast Deck Panel Bridge with UHPC Joints	W. Parry, A. Schott, Mathieu Roze
3	1.75	Utilization of Ultra-High Performance Concrete (UHPC) in New York	A. Parry, J. Nielsen, A. Storch, A. Vickery, A. Vachary
4	1.76	Application of Ultra High Performance Concrete in Expediting the Replacement and Rehabilitation of Highway Bridges	W. Parry, A. Schott, Mathieu Roze
5	1.77	Overjoy Dust®, a durable solution for bridges retrofitting	W. Parry, A. Schott, Mathieu Roze

Monday, 18 JUL 2016
2:00 pm - 5:00 pm
note: concurrent interactive Panel 2 on Bridges - Part 2

Architectural Modifiers
Moderator:

1	2.78	Elimination of Pattern Production in Geometrically Complex UHPC Forms	Keely L. Parry, Lamta El-Minghali, Stathis Tsarouchas
2	2.79	Pressurized Sandwich Beams with UHPC Covers	Michael Brey, Sreelakshmi Ramesh, Hoang Kim
3	2.80	Development of Stay-In-Place Formwork Using GPFR Reinforced UHPC Elements	Jun Xu, Shaoming Lian, Xiuchao Xu, Lu Hu
4	2.81	UHPC-RC for Architectural Structural Columns with Non-Slenderness Geometries	Jun Xu, Shaoming Lian, Xiuchao Xu, Lu Hu

Material Behavior 2
Moderator:

1	2.82	UHPC- and HPC in Severe Environmental Conditions, Resistance Against Freeze-thaw Cycles, Aggressive Chemical Agents and Dynamic Loading	Keely L. Parry, Lamta El-Minghali, Stathis Tsarouchas
2	2.83	Effect of Different Curing Regimes on Strength and Transport Properties of UHPC Containing Recycled Steel Tow Woven as Micro Steel Fibers	Michael Brey, Sreelakshmi Ramesh, Hoang Kim
3	2.84	Effect of Silica Powder and Cement Type on Durability of Ultra-High-Performance Concrete (UHPC)	Michael Brey, Sreelakshmi Ramesh, Hoang Kim
4	2.85	Maternal Level Evaluation of Different Commerially Available UHPC Glass Materials	Jun Xu, Shaoming Lian, Xiuchao Xu, Lu Hu

Structures 1
Moderator:

| 1 | 2.86 | Effect of Extreme Temperatures on the Coefficient of Thermal Expansion for Ultra-High Performance Concrete | Keely L. Parry, Lamta El-Minghali, Stathis Tsarouchas |
| 2 | 2.87 | Three Dimensional Fracture Material Model for Ultra-High Performance Fiber Reinforced Concrete under Tensile Loading | Keely L. Parry, Lamta El-Minghali, Stathis Tsarouchas |

Monday, 18 JUL 2016
5:00 pm - 8:00 pm
note: concurrent interactive Panels on (2) Bridges - Part 2, and (3) Architectural Design

Materials 2
Moderator:

1	2.88	A New Mix-Design Method for UHPC based on Steepest Optimization of Particle Parking Density	Keely L. Parry, Lamta El-Minghali, Stathis Tsarouchas
2	2.89	Influence of Steel Fibres and Matrix Composition on the Properties of UHPPHC	Michael Brey, Sreelakshmi Ramesh, Hoang Kim
3	2.90	Material Efficiency in the Design of UHPC Paste	Keely L. Parry, Lamta El-Minghali, Stathis Tsarouchas

Structures 2
Moderator:

1	2.91	Characterization of high strength cement paste with pristine graphite and heptane graphite emulsion	Keely L. Parry, Lamta El-Minghali, Stathis Tsarouchas
2	2.92	The First North American Broad Based Structural Design Guide on UHPC - ACI 239C	Keely L. Parry, Lamta El-Minghali, Stathis Tsarouchas
3	2.93	Small scale shear connectors -HPC/SHPC	Keely L. Parry, Lamta El-Minghali, Stathis Tsarouchas
4	2.94	Development length of reinforcing bars in UHPC; An experimental and analytical investigation	Keely L. Parry, Lamta El-Minghali, Stathis Tsarouchas

IIS-UHPC draft presentation schedule as of 15JUN2016.xlsx page 1 of 2
Wednesday 20 July 2016
10:50am - 12:30pm
title: Concurrent Interactive Panel II on Material Characterization

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Author</th>
<th>Author 1 Full Name</th>
<th>Author 2 Full Name</th>
<th>Author 3 Full Name</th>
<th>Author 4 Full Name</th>
<th>Author 5 Full Name</th>
<th>Author 6 Full Name</th>
<th>Author 7 Full Name</th>
<th>Author 8 Full Name</th>
<th>Author 9 Full Name</th>
<th>Author 10 Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Involvement of crack speed in ultra-high-performance concrete (UHPC) under high speed loading rates</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Challenges in Assessing the Precision of High Strain Rate Testing for UHPC</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Influence of Steel Fiber Size and Shape on Quasi-Static Mechanical Properties and Dynamic Impact Properties of Ultra-High-Performance Concrete</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Effect of Design Parameters on the Blast-Response of Ultra-High-Performance Concrete Columns</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>The Effect of Casting Flow Defects on the Flexural Behavior of 2-way UHPC Plates Investigated by Digital Image Correlation and Magnetic Assessment</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>The Effect of Loading on the Flexural Behavior of UHPC Bridge Deck Slabs</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Effects of Fiber Reinforcement on the Dynamic Behavior of UHPC</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>In-service Performance of Different UHPC-Class Materials in Prefabricated Bridge Deck Connections</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Experimental Design Procedures for UHPC Beams and Slabs</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Performance of Different UHPC-Class Materials in Prefabricated Bridge Deck Connections</td>
<td></td>
</tr>
</tbody>
</table>

Wednesday 20 July 2016
11:30am - 12:30pm
title: Concurrent Interactive Panel II on Rehabilitation & Retrofitting - Part 1

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Author</th>
<th>Author 1 Full Name</th>
<th>Author 2 Full Name</th>
<th>Author 3 Full Name</th>
<th>Author 4 Full Name</th>
<th>Author 5 Full Name</th>
<th>Author 6 Full Name</th>
<th>Author 7 Full Name</th>
<th>Author 8 Full Name</th>
<th>Author 9 Full Name</th>
<th>Author 10 Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The First Large Application of UHPC in the Czech Republic</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Application of Ultra-High Performance Concrete in Bridge Engineering in China</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Structural design for the Quayside System</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Benefits of Ultra-High-Performance Concrete for the Rehabilitation of the Pulaski Skyway Bridge</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>KICT’s Application of UHPC to the First UHPC Cable Stayed Roadway Bridge</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>The First Large Application of UHPC in the Czech Republic</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Application of Ultra-High Performance Concrete in Bridge Engineering in China</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Structural design for the Quayside System</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Benefits of Ultra-High-Performance Concrete for the Rehabilitation of the Pulaski Skyway Bridge</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>KICT’s Application of UHPC to the First UHPC Cable Stayed Roadway Bridge</td>
<td></td>
</tr>
</tbody>
</table>

Wednesday 20 July 2016
2:00pm - 3:10pm
title: Concurrent Interactive Panel II on Rehabilitation & Retrofitting - Part 2 and Mixtures Proportioning

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Author</th>
<th>Author 1 Full Name</th>
<th>Author 2 Full Name</th>
<th>Author 3 Full Name</th>
<th>Author 4 Full Name</th>
<th>Author 5 Full Name</th>
<th>Author 6 Full Name</th>
<th>Author 7 Full Name</th>
<th>Author 8 Full Name</th>
<th>Author 9 Full Name</th>
<th>Author 10 Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>The Effect of Casting Flow Defects on the Flexural Behavior of 2-way UHPC Slabs Investigated by Digital Image Correlation and Magnetic Assessment</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Mechanical behavior of UHPPRC thin plate reinforced with externally bonded CFRP sheet</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Flexural failure modes of ribbed triangular UHPPRC plates: experimental and numerical investigation</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Performance of UHPPRC Plates under Repeated Impact Load</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Flexural Design Procedures for UHPC Beams and Slabs</td>
<td></td>
</tr>
</tbody>
</table>

Wednesday 20 July 2016
1:30pm Keynote Lecture
title: Office of Bridges & Structures, FHWA

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Author</th>
<th>Author 1 Full Name</th>
<th>Author 2 Full Name</th>
<th>Author 3 Full Name</th>
<th>Author 4 Full Name</th>
<th>Author 5 Full Name</th>
<th>Author 6 Full Name</th>
<th>Author 7 Full Name</th>
<th>Author 8 Full Name</th>
<th>Author 9 Full Name</th>
<th>Author 10 Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IIS-UHPC draft presentation schedule as of 15JUL2016.xlsx</td>
<td></td>
</tr>
</tbody>
</table>